(35) S. Schreier-Muccillo, K. W. Butler, and I. C. P. Smith, Arch. Biochem Biophys., 159, 297-311 (1973).
(36) It is unfortunate that it is the high field lines which are resolved. The variation of the height of the $m=-1$ line with τ is greater than that for the other two lines. In systems where all three lines are resolved, ${ }^{8}$ one may get different results as a function of temperature by calculating f or α for each line.
(37) P. Tancrède, P. Bothorel, P. de St. Romain, and D. Patterson, J. Chem. Soc. Faraday Trans. 2, 73, 15-28 (1977); P. Tancrède, P. Bothorel, and D. Patterson, ibld., 29-39 (1977).
(38) S. Zager and J. H. Freed (unpublished results) have found that pd-Tempone is not very soluble in a series of long-chain n-alkanes.
(39) In nematic phase 7-A pd-Tempone and Tempo were found to align with the plane of the ring tending to be parallel to the long axes of the solvent molecules.
(40) M. Setaka and C. Lagercrantz, J. Am. Chem. Soc., 97, 6013-6018 (1975).
(41) (a) J. Seelig, H. U. Gally, and R. Wohlgemuth, Biochim. Biophys. Acta, 467, 109-119 (1977); (b) M. F. Brown and J. Seelig, Nature (London), 269, 721-723(1977).
(42) B. R. Lentz, Y. Barenholz, and T. E. Thompson, Blochemistry, 15,

4521-4528 (1976).
(43) G. W. Stockton, C. F. Polnaszek, A. P. Tulloch, F. Hasan, and I. C. P. Smith, Biochemistry, 15, 954-966 (1976); A. Seelig and J. Seelig, ibid., 13, 4839-4844 (1974).
(44) D. Marsh, A. Watts, and P. F. Knowles, Biochim. Biophys. Acta, 465, 500-514 (1977).
(45) J. Suurkuusk, B. R. Lentz, Y. Barenholz, R. Biltonen, and T. E. Thompson. Biochemistry, 15, 1393-1401 (1976).
(46) M. Windholz, Ed., "The Merck Index'", 9th ed., Merck and Co. Inc., Rahway, N.J., 1976.
(47) Y. K. Levine, N. J. M. Birdsall, A. G. Lee, and J. C. Metcalfe, Biochemistry, 11, 1416-1421 (1972).
(48) L. O. Sillerud and R. E. Barnett, Biochim. Biophys. Acta, 465, 466-470 (1977).
(49) Y. K. Levine, A. G. Lee, N. J. M. Birdsall, J. C. Metcalfe, and J. D. Robinson, Biochim. Biophys. Acta, 291, 592-607 (1973).
(50) Y. Katz and J. M. Diamond, J. Membrane Biol., 17, 101-120 (1974).
(51) Note Added in Proof: J. A. Dix, D. Kivelson, and J. M. Diamond, J. Membrane Biol., 40, 315-342 (1978), have recently examined the partitioning of DBTN in DPL bilayers.

Effects of Donor Molecules on the Palladium-Catalyzed Cyclocotrimerization of Acetylenes with Olefins. Preparation of Dimeric Tetrakis(methoxycarbonyl)palladiacyclopentadiene(base) Complexes and the Structure with Base $=2,6$-Lutidine

Leo D. Brown, ${ }^{1 a}$ Kenji Itoh, ${ }^{* 1 b}$ Hiroharu Suzuki, ${ }^{16}$ Kenji Hirai, ${ }^{1 b}$ and James A. Ibers*1a
Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60201, and the Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464, Japan. Received May 12, 1978

Abstract

A tetrakis(methoxycarbonyl)cyclohexadiene annulation of norbornene, cyclopentene, and cyclohexene with two molecules of dimethyl acetylenedicarboxylate (DMAD) is effectively catalyzed by a combination of an oligomeric palladiacyclopentadiene complex, $\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\right]_{n}$ (1), with I equiv of triphenylphosphine. The reaction of 1 with $\mathrm{L}=$ pyridine, α-picoline, 2,5 -lutidine, 2,6-lutidine, or triphenylphosphine led to new dimeric complexes of formula $\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L}\right]_{2}$. In these complexes there is intermolecular coordination through the carbonyl oxygen atom of the α-methoxycarbonyl group as deduced from spectroscopic results and as shown in an X -ray structure determination of the $\mathrm{L}=2,6$-lutidine complex. This complex crystallizes with four dimers in space group $C_{2 h}^{5}-P 2_{1} / \mathrm{c}$ of the monoclinic system in a cell of dimensions $a=16.967$ (4) $\AA, b=14.362$ (3) $\AA, c=18.410(5) ~ \AA, \beta=112.05(1)^{\circ}$. The structure has been refined by full-matrix least-squares methods to values of R and R_{w} of 0.036 and 0.050 , respectively, based on 440 variables and 8287 observations. Acceleration of the rate of cyclocotrimerization of two DMAD molecules with norbornene by the addition of I equiv of triphenylphosphine to the catalyst, 1, and the formation of the dimeric complex are explained in terms of a common three-coordinate intermediate, " $\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L}$ ", which is effectively trapped by an entering cycloolefin in the palladium-catalyzed cyclohexadiene annulation.

Metallocycles have attracted considerable interest because they are often key intermediates in various homogeneous catalytic reactions. For example, metallocyclobutane is an important intermediate in olefin metathesis, ${ }^{2}$ transition metal mediated $[\sigma 2+\sigma 2]$ skeletal isomerization, ${ }^{3}$ and $[\sigma 2+\pi 2]$ cycloadditions ${ }^{4}$ of strained molecules, Metallocyclopentadiene complexes, $\left[\mathrm{MC}_{4} \mathrm{R}_{4}\right] \mathrm{L}_{n}$, are key intermediates in cyclooligomerization ${ }^{5-9}$ or cyclocooligomerization ${ }^{10-16}$ of various acetylenes using low-valent transition-metal catalysts. Recently we reported that tetrakis(methoxycarbonyl)palladiacyclopentadiene cyclic olefin complexes are key intermediates for a formally $\left[\pi 2+\pi 2+\pi 2^{\prime}\right]$ cyclocooligomerization between two molecules of dimethyl acetylenedicarboxylate (DMAD) and an electron-donating olefin, such as norbornene (NB) or norbornadiene. ${ }^{16}$ The oligomeric $\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\right]_{n}(1)$ species is a catalyst for the cyclocotrimerization of two DMAD molecules with one NB molecule (eq 1). The reaction proceeds

without formation of hexamethyl mellitate, the cyclotrimerization product of three molecules of DMAD. A plausible mechanism ${ }^{16}$ of this palladium-catalyzed cyclocotrimerization reaction is shown in Scheme I, where L is DMAD or a cyclic olefin present as a reactant in the catalytic system.

We have now found that the rate of reaction 1 is markedly increased, after a slight induction period, if triphenylphosphine

Scheme I

is added to the reaction mixture. The present paper reports these studies, as well as an investigation of the reactions of 1 with various ligands L , including $\mathrm{L}=\mathrm{PPh}_{3}$. Isolable species or proposed intermediates to be discussed include $\operatorname{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)(\mathrm{NB}) \mathrm{L}(2),\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L}\right]_{2}(3)$, $\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L}_{2}(4)$, and $\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L}(5)$. The nature of the dimeric compound 3 d , with $\mathrm{L}=2,6$-lutidine, has been established from a single-crystal X-ray study.

Experimental Section

Physical Measurements. Infrared spectra (KBr pellets) were recorded on a JASCO DS 403G spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained at 60 MHz on a JEOL C-60HL spectrometer, and chemical shifts were determined relative to internal tetramethylsilane. Molecular weights were measured on a Hitachi Perkin-Elmer Model II5 instrument by vapor pressure osmometry in chloroform. Gas chromatography was performed on a Shimazu GC-4B instrument equipped with TC detectors.

Materials. The oligomeric palladiacyclopentadiene complex, $\left[\mathrm{PdC}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right]_{n}(1)$, was prepared from $\mathrm{Pd}($ dibenzylideneacetone $)_{3}\left(\mathrm{CHCl}_{3}\right)^{17}$ with an excess of DMAD according to a modified procedure reported previously. 8,9

Preparation of $\left[\mathbf{P d}\left(\mathrm{C}_{\mathbf{4}}\left(\mathrm{COOCH}_{3}\right)_{\mathbf{4}}\right) \mathbf{L}\right]_{\mathbf{2}}(\mathbf{3}) . \mathbf{L}=$ Pyridine, 3a. To a dichloromethane (8 mL) suspension of $1(68.88 \mathrm{mg}, 0.1664 \mathrm{mmol})$ a dichloromethane $(2 \mathrm{~mL})$ solution of pyridine $(13.99 \mathrm{mg}, 0.1768$ mmol) was added with stirring at room temperature. The mixture turned gradually from a yellow-green suspension to an orange-yellow solution. After 5 h of stirring at room temperature, a trace of merallic palladium was filtered off, and the solution was concentrated under reduced pressure to ca. 3 mL . Ethyl ether (15 mL) was added to the concentrate, and the mixture was kept in a refrigerator for 2 days. The crystals of 3 a were filtered and then washed with excess ethyl ether. The yield was 81.4%, mp 204-205 ${ }^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{Pd}_{2}: \mathrm{C}, 43.47 ; \mathrm{H}, 3.65$. Found: C, $43.35 ; \mathrm{H}, 3.59$. Mol wt: calcd, 939.5 ; found, 950.5 amu .

Compound $3 \mathrm{3a}$ was also prepared in 93% yield by the disproportionation of $1(35.25 \mathrm{mg}, 0.0902 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)$ (pyridine) $)_{2}(\mathbf{4 a}, 46.99 \mathrm{mg}, 0.08562 \mathrm{mmol})$ in dichloromethane (5 mL) at room temperature for 3 h .
$\mathbf{L}=\alpha$-Picoline, 3b. A dichloromethane (2 mL) solution of α-picoline ($19.40 \mathrm{mg}, 0.2083 \mathrm{mmol}$) was added to a dichloromethane (5 $\mathrm{mL})$ suspension of $1(83.36 \mathrm{mg}, 0.2134 \mathrm{mmol})$ and was then stirred at room temperature for 24 h . The resultant yellow-orange solution was filtered in order to remove metallic palladium. The solution was concentrated under reduced pressure to ca. 1.5 mL and ethyl ether (2 mL) was added. The mixture was kept in a refrigerator overnight; orange-yellow crystals of $\mathbf{3 b}$ as the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvate were then isolated in 98% yield by filtration, mp $195-196^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{Pd}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, $41.75 ; \mathrm{H}, 3.79$. Found: $\mathrm{C}, 42.4 \mathrm{I} ; \mathrm{H}$, 3.67. Mol wt: calcd, 967.5 ; found, 1054 amu .
$\mathbf{L}=\mathbf{2 , 5}$-Lutidine, 3c. A dichloromethane (1 mL) solution of 2,5lutidine ($31.43 \mathrm{mg}, 0.2933 \mathrm{mmol}$) was added to a dichloromethane (4 mL) suspension of $1(115.2 \mathrm{mg}, 0.2951 \mathrm{mmol})$. After 2 h of stirring at room temperature the resultant green solution was filtered and was concentrated to ca. 0.5 mL . Addition of ethyl ether (3 mL) caused precipitaion of $3 \mathrm{c}(97.4 \%$ yield $)$, mp $197-202^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{Pd}_{2}$: C, $45.85 ; \mathrm{H}, 4.45$. Found: C, $46.53 ; \mathrm{H}, 4.45$. Mol wi: calcd, 995.6 ; found, 1032 amu.
$\mathbf{L}=\mathbf{2 , 6}$-Lutidine, 3d. To a dichloromethane (4 mL) suspension of $1(57.92 \mathrm{mg}, 0.1483 \mathrm{mmol}$), a dichloromethane (1 mL) solution of 2,6-lutidine ($15.73 \mathrm{mg}, 0.1468 \mathrm{mmol}$) was added with stirring at room temperature. The mixture turned immediately to a dark green soluion. After removal of trace palladium metal, the solution was concentrated under reduced pressure to ca. 1 mL . Addition of ethyl ether (3 mL) caused precipitation of yellow crystals (82.6% yield), mp $197-200{ }^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{16} \mathrm{Pd}_{2}: \mathrm{C}, 45.85 ; \mathrm{H}, 4.25$.

Found: C, 45.82; H, 4.41. Mol wt: calcd, 995.56; found, 961.25 amu.
$\mathbf{L}=\mathbf{P P h}_{3}, \mathbf{3 e}$. A mixture of $\mathbf{1}(296.34 \mathrm{mg}, 0.7586 \mathrm{mmol})$, triphenylphosphine ($200.10 \mathrm{mg}, 0.7629 \mathrm{mmol}$), and dichloromethane (20 mL) was stirred for 24 h at room temperature to give an orange-yellow solution. After removal of metallic palladium the solution was concentrated to ca. 1 mL in vacuo and ethyl ether was added (1 mL). The mixture was kept in a refrigerator overnight. The resultant yellow crystals are the dichloromethane solvate of $3 \mathrm{e}(\mathrm{NMR} \delta 5.26,2 \mathrm{H}$, s), $\mathrm{mp} \mathrm{138-140}{ }^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{61} \mathrm{H}_{56} \mathrm{Cl}_{2} \mathrm{O}_{16} \mathrm{P}_{2} \mathrm{Pd}_{2}: \mathrm{C}, 50.51$; H, 3.90. Found: C, 50.46 ; H, 3.96. Mol wt: calcd, 1305; found, 1250 amu.

Complex 3 e was also prepared by the following disproportionation procedure. A dichloromethane (10 mL) suspension of $1(1.73 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}{ }^{8.9}(4 \mathrm{e}, 1.68 \mathrm{mmol})$ was stirred at room temperature for 10 min . Workup of the resultant yellow-green solution yielded 3 e in 96% yjeld.

Preparation of $\left.\mathrm{Pd}_{(\mathrm{C}}^{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L}_{2}$ (4). $\mathrm{L}=$ Pyridine (4a). A dichloromethane (8 mL) suspension of $1(83.55 \mathrm{mg}, 0.2139 \mathrm{mmol})$ was added with stirring to a dichloromethane (2 mL) solution of pyridine ($130.86 \mathrm{mg}, 3.654 \mathrm{mmol}$) at room temperature. Trace metallic palladium was removed from the yellow-green solution which was then concentrated to ca. 1 mL under reduced pressure. Addition of ethyl ether gave pale yellow prisms of 4 a in 97% yield, mp $219-220^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Pd}$: C, 48.15; H, 4.04. Found: C, 48.32; H, 3.48 .
$L=\alpha$-Picoline ($\mathbf{4 b}$). Compound $\mathbf{4 b}$ was prepared similarly as yel-low-green prisms in 90% yield using $1(88.52 \mathrm{mg}, 0.2260 \mathrm{mmol}), \alpha$ picoline (1 mL), and dichloromethane (10 mL), mp $225-227^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Pd}$: C, 49.97 ; H, 4.72. Found: C, 50.17 ; H, 4.43 .
$\mathbf{L}=\mathbf{2 , 5}$-Lutidine ($\mathbf{4 c}$). Complex $\mathbf{4 c}$ was prepared by adding a dichloromethane (2 mL) solution of 2,5 -lutidine (11.31 mg) to a dichloromethane (2 mL) solution of $3 \mathrm{c}(33.78 \mathrm{mg}, 0.0679 \mathrm{mmol})$ at room temperature followed by stirring for 2 h . A workup similar to that used for 4 a gave $\mathbf{4 c}$ in 76% yield, $\mathrm{mp} 201-205^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Pd}$: C, $51.62 ; \mathrm{H}, 5.00$. Found: C, $51.41 ; \mathrm{H}, 4.87$.
$\mathbf{L}=\mathbf{2 , 6} \mathbf{- L u t i d i n e}(\mathbf{4 d})$. To a dichloromethane (8 mL) suspension of $1(61.10 \mathrm{mg}, 0.1564 \mathrm{mmol})$ was added a dichloromethane (2 mL) solution of excess 2,6 -lutidine (1 mL). The mixture turned to a yel-low-green solution after 15 min . Complex 4 d was isolated in 86% yield as yellow needles, mp $153-154{ }^{\circ} \mathrm{C}$ dec. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Pd}: \mathrm{C}, 51.62 ; \mathrm{H}, 4.63$. Found: C, $51.41 ; \mathrm{H}, 4.87$.
$\mathbf{L}=$ Triphenylphosphene (4e). Compound 4 e was prepared in 91% yield by the literature method ${ }^{8}$ using $1(104.47 \mathrm{mg}, 0.2674 \mathrm{mmol})$, $\mathrm{PPh}_{3}(154.23 \mathrm{mg}, 0.5880 \mathrm{mmol}$), and dichloromethane (25 mL), mp $151-152^{\circ} \mathrm{C}$ dec $\left(150^{\circ} \mathrm{C}\right) .{ }^{8}$ Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pd}: \mathrm{C}, 62.99$; H, 4.63. Found: C, 63.16; H, 4.71.

Rate Measurements. The effect of triphenylphosphine on the rate of cyclocotrimerization of two DMAD molecules with one NB molecule, as catalyzed by 1 , was determined from the remaining DMAD as detected by GLC (stainless steel column, $2.5 \mathrm{~mm} \times 3.0 \mathrm{~m}$ length, packed with about 25% Apiezon grease L on $60-80$ mesh Shimalite). As a typical run, the catalytic annulation of NB with 1 equiv of PPh_{3} is described. Triphenylphosphine ($0.0253 \mathrm{mg}, 0.097 \mathrm{mmol}$) and 1 ($0.0376 \mathrm{mg}, 0.096 \mathrm{mmol}$) were placed in a $20-\mathrm{mL}$ flask fitted with a three-way stopcock. The flask was purged with argon, and benzene $(3.50 \mathrm{~mL})$ was added to form 4 e immediately. Norbornene $(0.145 \mathrm{~g}$, 1.54 mmol), DMAD ($0.428 \mathrm{~g}, 3.01 \mathrm{mmol}$), and decalin (an internal standard of GLC, 0.355 g) were added. The flask was put in a temperature bath kept at $65^{\circ} \mathrm{C}$. A sample was withdrawn with a microsyringe at appropriate intervals and was analyzed by GLC (carrier gas, H_{2}; the retention time of DMAD was 2.5 min at $130^{\circ} \mathrm{C}$). After all DMAD was consumed (3 h), the product, 5,10-endo-dihydro-6,7,8,9-tetrakis(methoxycarbonyl)benzonorbornene, separated by column chromatography (silica gel, Merck 7734 with a benzenechloroform mixed solvent), was obtained in 95% yield. The spectroscopic data of the product were consistent with an authentic sample reported previously.

Catalytic Annulation of Cyclopentene with DMAD. A benzene (3 $\mathrm{mL})$ suspension of $1(0.0125 \mathrm{~g}, 0.0319 \mathrm{mmol})$ and triphenylphosphine $(0.0082 \mathrm{~g}, 0.0312 \mathrm{mmol})$ were placed in a tube. Cyclopentene (0.770 $\mathrm{g}, 11.3 \mathrm{mmol})$ and DMAD $(0.43 \mathrm{l} \mathrm{g}, 3.04 \mathrm{mmol})$ were added and the tube was sealed. The mixture was kept at $40^{\circ} \mathrm{C}$ for 100 h . The resultant reddish-brown solution was concentrated, and the remaining oil was separated by column chromatography with silica gel (Merck 7734, benzene and chloroform as eluents). The annulation product,

Figure 1. The effect of added equivalents of PPh_{3} on the rate of reaction 1.

2,3,8,9-tetrahydro-4,5,6,7-tetrakis(methoxycarbonyl)indene, was isolated as a colorless oil (0.266 g) in 50% yield: IR $\left(\mathrm{CCl}_{4}\right) 1735 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{O})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.68(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.05(\mathrm{br} \mathrm{m}, 4 \mathrm{H}$, homoallylic), 3.18 (d, 2 H , allylic), 3.75 and 3.80 (s, each 6 H , COOCH_{3}). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{8}: \mathrm{C}, 57.95 ; \mathrm{H}, 5.72$. Found:, C, 57.71; H, 5.55 .

Catalytic Annulation of Cyclohexene with DMAD. A benzene (3 mL) solution of $1(0.0118 \mathrm{~g}, 0.0302 \mathrm{mmol})$ and triphenylphosphine $(0.0016 \mathrm{~g}, 0.0215 \mathrm{mmol})$ was mixed with cyclohexene ($0.810 \mathrm{~g}, 9.86$ mmol) and DMAD ($0.430 \mathrm{~g}, 3.03 \mathrm{mmol}$). The mixture was kept in a sealed tube at $55^{\circ} \mathrm{C}$ for 4 days. A chromatographic separation similar to that above gave hexahydro-1,2,3,4-tetrakis(methoxycarbonyl) naphthalene in 56% yield (0.298 g) as a colorless oil: IR $\left(\mathrm{CCl}_{4}\right)$ $1726 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$; NMR $\left(\mathrm{CCl}_{4}\right) \delta 1.2-2.1(\mathrm{brm}, 8 \mathrm{H}), 2.80(\mathrm{t}, 2$ H , allylic), 3.74 (s, $12 \mathrm{H}, \mathrm{COOCH}_{3}$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{8}$: C. 59.01: H, 6.05 . Found: C. 59.46 ; H, 6.06

X-ray Diffraction Study of $\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\left(2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)\right]_{2}$ (3d). Crystals of 3d suitable for the structure determination were obtained by dissolving the material in dichloromethane and then slowly adding diethyl ether. Preliminary film data from a single crystal mounted in air revealed Laue symmetry $2 / m$ and systematic absences characteristic of space group $C_{i}^{3}-P 2_{1} / c$. Based on the setting angles of 12 manually centered reflections ($30^{\circ}<2 \theta\left(\right.$ Mo K α_{1}) $<32^{\circ}$) ihe cell constants of Table I were obtained. Data were collected at room temperature on a Picker FACS-I diffractometer using methods standard in this laboratory. ${ }^{18}$ Some of the details of data collection and reduction are given in Table 1 .
The structure was solved in a straightforward way, using procedures and computer programs described before. ${ }^{18}$ From a sharpened, ori-gin-removed Patterson function the positions of the two Pd atoms were evident. The other nonhydrogen atoms were found through the usual combination of least-squares refinement and difference Fourier techniques. The atoms of the two pyridine rings of the lutidine ligands were treated as rigid groups. After one cycle of anisotropic refinement of the independent nonhydrogen atoms, together with isotropic refinement of the atoms of the two rigid groups, the hydrogen atoms of the 12 methyl groups were apparent on a subsequent difference Fouricr map. These positions were idealized, using a $\mathrm{C}-\mathrm{H}$ bond length of $0.95 \AA$ and assigning $B(\mathrm{H})=B(\mathrm{C})+1 \AA^{2}$. The positions of the bydrogen atoms on the pyridine rings were idealized in a similar manner. The fixed contributions of these hydrogen atoms were included in subsequent calculations. The final cycle of full-matrix least-squares refinement converged to values of R and R_{w} of 0.036 and 0.050 . respectively, and to an error in an observation of unit weight of 1.64 electrons, for the 440 variables and 8287 observations. An analysis of $\Sigma w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ as a function of $\left|F_{\mathrm{o}}\right|$, setting angles, and Miller indices showed nothing unusual. Of those reflections having $F_{0}{ }^{2}<3 \sigma\left(F_{0}{ }^{2}\right)$ which were omitted from the refinement, only three have $\left|F_{o}^{2}-F_{c}^{2}\right|>5 \sigma\left(F_{0}^{2}\right)$. Peaks in the final difference Fourier map range in height from -0.9 (1) to $+0.9(1) \mathrm{e} / \AA^{3}$.

Final positional and thermal parameters are tabulated in Tables II and III. The idealized positions of the hydrogen atoms are given in

Table I. Crystal Data and Data Collection Procedures for $\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\left(2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)\right]_{2}$

compd	$\begin{aligned} & {\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)(2,6-\right.} \\ & \left.\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)\right]_{2} \end{aligned}$
formula	$\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{Pd}_{2} \mathrm{O}_{16}$
mol wt	995.56 amu
a	16.967 (4) A
b	14.362 (3) \AA
c	18.410 (5) \AA
β	$112.05(1)^{\circ}$
V	$4158.1 \AA^{3}$
Z	4
space group	$C_{2 h}^{5}-P 2_{1} / c$
ρ_{c}	$1.590 \mathrm{~g} / \mathrm{cm}^{3}$
ρ_{0}	1.57 (2) g/cm ${ }^{3}$
bounding planes	\{10]\}, \{100\}, 0011$\},(001$)
crystal volume	$0.0687 \mathrm{~mm}^{3}$
linear absorption coefficient (Mo K α)	$9.23 \mathrm{~cm}^{-1}$
transmission factors	0.697-0.787
takeoff angle	$2.7{ }^{\circ}$
a perture	3.2 mm wide by 4.7 mm high 32 cm from crystal
scan range	0.6° below Mo $\mathrm{K} \alpha_{1}$ peak to 0.6° above Mo $\mathrm{K} \alpha_{2}$ peak
scan speed	$2.0^{\circ} 26 / \mathrm{min}$
collection range	$\pm h,+k,+l 3^{\circ} \leq 2 \theta\left(\mathrm{MoK} \alpha_{1}\right) \leq 55^{\circ}$
number of data	10302 total; 8287 unique with $F_{0}{ }^{2}>$ $3 \sigma\left(F_{0}{ }^{2}\right)(p=0.04)$

Table IV. ${ }^{19}$ Table V gives the root-mean-square amplitudes of vibration. ${ }^{19}$ Values of $10\left|F_{\mathrm{o}}\right|$ vs. $10\left|F_{\mathrm{c}}\right|$ for those reflections used in the refinement are given in Table VI. ${ }^{19}$

Results

The selective cyclocotrimerization of two molecules of DMAD and one molecule of norbornene is catalyzed by an oligomeric palladiacyclopentadiene complex. $\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\right]_{n}(1)$, to give stereoselectively an exoannulation product. ${ }^{16}$ When triphenylphosphine is added to the system, the reaction rate is enhanced considerably after a slight induction period, as shown in Figure 1. The rate enhancement is maximum when 1 equiv of triphenylphosphine is added to the catalytic complex 1 . However, when 2 equiv is added, the reaction rate is still higher than it is without triphenylphosphine.

Addition of triphenylphosphine not only accelerates the rate of the catalysis but also broadens the choice of the olefin component. In fact, the catalytic annulation of cyclopentene or cyclohexene with two molecules of DMAD proceeds readily (reaction 2) in the presence of 1 and an equimolar amount of

$$
n=3(50 \%) ; n=4(56 \%)
$$

triphenylphosphine. These two cyclic olefins do not cyclocotrimerize with DMAD at all in the absence of triphenylphosphine.

As a means of assessing the effects of PPh_{3} on the catalytic system, PPh_{3}, as well as several other donor ligands, was reacted with 1 . When the ratio of donor ligand to 1 was $1: 1$, complexes of the general formula $\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L}\right]_{2}$ ($3 \mathrm{a}-\mathrm{e}$) were obtained in good yield, whereas in the presence of excess L complexes ${ }^{8,9}$ of the type $\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L}_{2}$ (4a-e) were obtained. The spectroscopic data on these complexes are listed in Table VII. The strong bands in the carbonyl

Table II. Positional and Thermal Parameters for the Nongroup Atoms of $\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\left(2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)\right]_{2}$

ATOM -0.e.	x^{4}	* 0	l_{6}	81^{8}	822.	833	*12.0.		**23.0.0.0*
POA	0.1410391141	0.0733561161	$0.368020(13)$	23.52(10)	31.23(13)	$20.0719)$	-0.08(8)	9.52171	2.66171
P08	0.2996421141	$0.116984(16)$	0.5713771131	21.161101	28.04(12)	23.18191	-1.02(8)	8.90171	0.16171
O(1)A	$0.18961(13)$	0.03916 (151	0.568461121	28.4191	36.3 (11)	21.4171	-7.3(8)	12.3171	-4.3(7)
O1214	$0.04138(161$	-0.07221(17)	0.531791141	42.11111	50.5(14)	31.2191	-19.6(101	23.7181	-10.3191
O1314	$0.14407(18)$	-0.271514171	0.447471161	55.41141	36.6 (13)	38.9111)	-13.0(11)	$10.6110)$	0.91181
O1414	0.243401171	-0.19041(19)	0.540001141	$51.0(13)$	$49.9(15)$	25.2191	-12.4(11)	4.3(8)	9.6191
O151A	0.185111221	-0.20754:211	0.237011151	$86.5(20)$	$56.9(18)$	30.91101	10.9(15)	$28.9118)$	-4.71111
O1614	$0.25379(18)$	-0.25294(20)	0.360101161	47.4(13)	$55.3(16)$	36.91111	$16.2(12)$	13.8 (10)	-5.0(11)
O1714	0.080961181	-0.01042(24)	0.170711151	$46.1(13)$	107.01241	23.5191	5.71141	5.9191	1.61121
O1814	0.222331171	-0.00024(19)	$0.21492(14)$	$49.5(13)$	$57.0(16)$	32.0191	$7.5(121$	24.8191	12.2(10)
CiJla	0.154861181	-0.03252(21)	0.443141161	24.7(12)	31.4(15)	18.8191	-1.7(11)	9.0191	1.1110)
CI2IA	0.174121201	-0.115811211	$0.42085(17)$	24.6(12)	$33.2(15)$	$20.9(10)$	-3.3(11)	$9.419)$	$0.0(10)$
C(3)A	0.176801211	-0.115251221	$0.34178(18)$	28.3(13)	$36.7(16)$	23.01111	-3.3(12)	11.8(10)	-3.7111)
C(4) ${ }_{\text {c }}$	0.159121191	-0.031741231	$0.30601(17)$	$26.2(13)$	$39.4(16)$	21.11101	-2.1(12)	$10.2(9)$	-2.0(11)
C(5)A	0.148831191	-0.018651201	$0.51931(171$	24.0(12)	30.8 (14)	22.81101	-1.3(11)	$11.2(9)$	1.5(10)
C(6)A	$0.18510(21)$	-0.201651231	$0.46873(18)$	$30.3(14)$	36.3 (16)	23.01111	$0.7(12)$	$11.3110)$	1.4(11)
Ci71A	0.2036 .71221	-0.19568(24)	$0.30586(20)$	36.7 (14)	36.91171	29.5(12)	-5.3(13)	19.11111	-4.4(12)
ci81a	0.148961241	-0.015791251	$0.22353(191$	$42.3(17)$	$45.6(18)$	23.11111	4.2(14)	15.21111	$0.5(12)$
ME (1)A	0.0844 (3)	-0.064713)	$0.60782(23)$	70.61241	87.131	40.61151	-40.5(21)	41.31171	-21.2(17)
ME (2) ${ }^{\text {a }}$	$0.2558(4)$	-0.2688131	$0.59199(26)$	92.131	74.131	37.31171	-5.6(25)	3.01181	27.9(19)
ME131A	0.2849131	-0.333601281	$0.3332(3)$	$54.9124)$	$46.2(20)$	$63.3(23)$	14.2(18)	26.51191	-6.2(17)
ME(4) A	0.2158141	0.0249141	$0.13658(26)$	95.131	86. (3)	$44.6(17)$	$19.8(28)$	$47.5121)$	$25.7120)$
ME (5)A	-0.01505(23)	0.1704131	$0.24012(23)$	29.91151	81.131	35.61151	$7.6117)$	7.81121	17.1(18)
ME (6) A	$0.29477(231$	0.1705131	$0.33811(26)$	29.9(15)	76.61291	$46.8(18)$	-13.31171	18.31131	-4.3(18)
01118	$0.10087(131$	0.177521151	$0.43162(131$	24.6191	35.4 (11)	28.1 (8)	1.1(8)	9.5171	-0.7(8)
O1218	0.112001151	0.296061171	$0.51241(16)$	28.71101	48.6(14)	46.61111	$3.5(10)$	15.1191	-13.4(10)
O131R	$0.29983(21)$	0.453131211	$0.46465124)$	48.31161	$49.2(16)$	108.21221	-8.2(13)	9.21151	34.51151
O141R	0.177521191	0.37727 (19)	$0.40478(191$	38.91131	$51.3(171$	60.01141	4.2(12)	$3.7(11)$	23.11121
O151R	0.496514191	$0.38463(20)$	$0.58402(171$	$51.9(14)$	$65.9(17)$	44.41121	-30.3(13)	$18.5(11)$	-12.1(12)
01618	0.449661181	$0.33303(19)$	0.461014151	48.9(13)	$54.5(16)$	$37.0(10)$	-15.8(12)	18.7(10)	-0.8(10)
O171R	0.541271181	$0.17422(25)$	$0.59555(191$	35.61121	$99.4(25)$	56.71141	13.9(14)	21.8(11)	$0.8(15)$
O181R	0.502831171	$0.14440(22)$	$0.69579(17)$	$33.5(121$	$77.5(19)$	$41.3(11)$	-6.5(12)	2.419)	14.5(12)
C 1118	0.238651201	$0.23056(22)$	0.513191181	25.21121	31.11141	26.41111	1.4111)	10.3(9)	-0.71101
C(218	$0.28777(21)$	$0.29703(23)$	$0.50021(20)$	27.4(13)	$31.1(16)$	32.41121	-0.61121	$9.4(10)$	1.6(11)
C(3)8	0.379381201	0.278131231	0.539191201	25.81131	$33.6(16)$	32.41131	-3.01121	10.41101	-1.8(11)
C(4) ${ }^{\text {c }}$	0.397121201	0.198791221	$0.58107(19)$	24.51121	31.4(15)	30.71121	-1.9(11)	9.91101	-1.3(11)
C(5)8	$0.14534(20)$	0.233261221	0.480921191	26.61131	31.5(15)	26.51111	2.41111	11.31101	1.7111)
Citha	0.257381251	$0.38410(26)$	$0.45522(25)$	35.91171	41.30191	49.01181	0.51151	$14.5(14)$	13.4(15)
C171日	0.447151211	$0.33900(23)$	0.532181211	28.31131	$33.4(16)$	35.61141	-3.81121	10.5(11)	-0.5(12)
Ci81R	0.487121211	$0.17152(25)$	0.623161221	30.31141	36.71181	36.91141	-4.2(13)	7.4(11)	-2.2(13)
ME1118	$0.01989(21)$	0.3039131	0.4827131	29.21131	$73.7(28)$	76.51251	11.91161	22.71151	-21.61211
ME1218	$0.13825(28)$	0.4603131	0.3619131	52.01211	67.5(25)	$92.7128)$	19.71191	7.31201	$48.8123)$
ME 1318	0.5173131	0.3831 (3)	0.4484131	67.4(25)	$64.1(27)$	61.71231	-17.2(21)	42.31211	$1.3(20)$
ME1418	$0.58774(27)$	0.1054141	0.735871281	39.41181	84.141	57.11201	5.21201	-10.41151	19.01221
ME 1518	0.35943 (27)	0.0232131	$0.74147121)$	49.41201	60.4(24)	27.21121	1.6118)	15.4(13)	5.51141
ME (6) 8	$0.38402(24)$	-0.01811(27)	0.48882 (21)	33.61161	$53.9122)$	34.31141	2.81151	15.41121	-3.8(14)

A ESTIMATEO STANOARO DEVIATIONS IN THE LEAST SIGNIFICANT FIGUREISI ANE GIVEN IN PARENTMESES IN TMIS AND ALL SUESEBUENT TABLES. TME
 are the tmermal coefficients $\times 10^{4}$.

Table III. Derived Parameters for the Rigid Group Atoms of $\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\left(2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)\right]_{2}$

ATOM *									
NA	0.139761131	$0.17509(13)$	0.28647 (11)	2.86151	NB	0.374841121	-0.002641121	$0.61734(11)$	2.79(4)
Ci91A	0.066141101	$0.20964(16)$	0.236151131	3.61461	C(9)	0.395481151	-0.03221(15)	$0.69124110)$	3.42(6)
Cilola	0.060421131	$0.27692(181$	0.17977 (14)	3.05181	Cil018	0.447761171	-0.10866(17)	0.722971101	4.47 (8)
C1111A	0.13537 (18)	$0.31069(171$	0.17499 (14)	6.031101	C(1118	$0.48084(16)$	-0.15772(15)	$0.67549(14)$	4.99191
C(121A	$0.21255(14)$	$0.27550(19)$	$0.22691(16)$	5.23191	C(12)	$0.46002(16)$	-0.12790(16)	0.598431131	4.29171
Ci13)A	$0.21119110)$	0.20829(16)	$0.28109(13)$	3.7517]	C 11318	0.407171141	-0.05055(15)	0.57250191	3.18(6)

 RIGID GROUP PARAMETERS

${ }^{\prime} C_{C}$. Y. AND Z ARE TME FRACTIONAL COOROINATES OF THE ORIGIN OF TME RISID GROUP. GTHE MIGID GNDUP ORIENTATION ANELES OELTA, EPSILON: CAND ETAGRAOIANSI HAVE BEEN DEFINEO PREVIOUSLY: S.J. LA PLACA AND J.A. 1BERS, ACTA CRYSTALLDGR., 18. 5IIIIGGSI.

Table VII. Spectroscopic Results on $\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L}\right]_{2}(\mathbf{3})$ and $\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L}_{2}(\mathbf{4})$ Complexes

complex		chemical shifts, $\delta \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right)$								$\begin{gathered} \nu(\mathrm{C}=\mathrm{O}), \\ \mathrm{cm}^{-1}(\mathrm{KBr}) \end{gathered}$	
		$\alpha-\mathrm{COOCH}_{3}$		$\beta-\mathrm{COOCH}_{3}$		$\mathrm{H}(2)$	$\begin{gathered} \mathrm{H}(3) \\ \hline 7.35 \end{gathered}$	H(4)	CH_{3}	free	bridging
$\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]_{2}$	(3a)	$\begin{gathered} 3.19 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 3.24 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 3.68 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 3.71 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 8.66 \\ (4 \mathrm{H}, \mathrm{dd}) \end{gathered}$	$\begin{gathered} 7.35 \\ (4 \mathrm{H}, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 7.68 \\ (2 \mathrm{H}, \mathrm{dd}) \end{gathered}$		$\begin{aligned} & 1724 \\ & 1705 \end{aligned}$	1618
$\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}$	$(4 \mathrm{a})^{d}$, s)		$\begin{gathered} 3.58 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 8.54 \\ (4 \mathrm{H}, \mathrm{dd}) \end{gathered}$	$\begin{gathered} 7.25 \\ (4 \mathrm{H}, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 7.71 \\ (2 \mathrm{H}, \mathrm{~m}) \end{gathered}$		$\begin{aligned} & 1720 \\ & 1695 \end{aligned}$	
$\begin{gathered} {\left[\mathrm{Pd}_{\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)}^{\left.\left(2-\mathrm{MeC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2}\right]} .\right.} \end{gathered}$	(3b)	$\begin{gathered} 3.12 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 3.22 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$		$\begin{gathered} 3.68 \\ (12 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 8.75 \\ (2 \mathrm{H}, \mathrm{dd}) \end{gathered}$	$\begin{gathered} 7.12 \\ 7.19 \\ (4 \mathrm{H}, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 7.64 \\ (2 \mathrm{H}, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.92 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{aligned} & 1725 \\ & 1711 \end{aligned}$	1621
$\begin{aligned} & \mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)(2-\mathrm{Me}- \\ & \left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)_{2} \end{aligned}$	(4b)				$\begin{gathered} 3.62 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 8.67 \\ (2 \mathrm{H}, \mathrm{dd}) \end{gathered}$	$\begin{gathered} 7.16 \\ 7.21 \\ (4 \mathrm{H}, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 7.63 \\ (2 \mathrm{H}, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.95 \\ 3.02 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$	1713	
$\begin{aligned} & {\left[\mathrm{Pd}_{\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)(2,5-}^{\left.\left.\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)\right]_{2}}\right.} \end{aligned}$	(3c)	$\begin{gathered} 3.11 \\ (3 \mathrm{H}, \mathrm{~s}) \\ 3.14 \\ (3 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 3.19 \\ (3 \mathrm{H}, \mathrm{~s}) \\ 3.20 \\ (3 \mathrm{H}, \mathrm{~s}) \end{gathered}$		$\begin{gathered} 3.66 \\ (12 \mathrm{H}, \mathrm{~s}) \end{gathered}$	8.54 $(2 . \mathrm{H}, \mathrm{m})$	7.00 $(2 \mathrm{H}, \mathrm{br})$	$\begin{gathered} 6.80- \\ 7.30 \\ (2 \mathrm{H}, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.30(5) \\ 2.85(2) \\ (12 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{aligned} & 1724 \\ & 1710 \end{aligned}$	1622
$\begin{aligned} & \mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)(2,5- \\ & \left.\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{2} \end{aligned}$	(4c)				$\begin{gathered} 3.59 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 8.47 \\ (2 \mathrm{H}, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 7.00 \\ (2 \mathrm{H}, \mathrm{br}) \end{gathered}$	$\begin{gathered} 6.80- \\ 7.20 \\ (2 \mathrm{H}, \mathrm{~m}) \end{gathered}$	$\begin{gathered} 2.27 \\ (6 \mathrm{H}, \mathrm{~s}) \\ 2.91 \\ (3 \mathrm{H}, \mathrm{~s}) \\ 2.85 \\ (3 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{aligned} & 1722 \\ & 1704 \end{aligned}$	
$\begin{aligned} & {\left[\mathrm{Pd}_{\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)(2,6-}^{\left.\left.\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)\right]_{2}}\right.} \end{aligned}$	(3d)	$\begin{gathered} 3.16 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 3.22 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$		$\begin{gathered} 3.62 \\ (12 \mathrm{H}, \mathrm{~s}) \end{gathered}$		$\begin{gathered} 7.02 \\ (4 \mathrm{H}, \mathrm{dd}) \end{gathered}$	$\begin{gathered} 7.50 \\ (2 \mathrm{H}, \mathrm{dd}) \end{gathered}$	$\begin{gathered} 3.06 \\ (6 \mathrm{H}, \mathrm{~s}) \\ 3.08 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{aligned} & 1724 \\ & 1704 \end{aligned}$	1622
$\begin{aligned} & \mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)(2,6- \\ & \left.\mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)_{2} \end{aligned}$	(4d)	dissociation of 2,6-lutidine ${ }^{\text {b }}$				7.63 (12 H, m)		$7.41(18 \mathrm{H}, \mathrm{m})$		$\begin{aligned} & 1722 \\ & 1706 \end{aligned}$	
$\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\left(\mathrm{PPh}_{3}\right)\right]_{2}$. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$(3 \mathrm{e})^{\text {c }}$	$\begin{gathered} 2.59 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 3.12 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 3.39 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$	$\begin{gathered} 3.78 \\ (6 \mathrm{H}, \mathrm{~s}) \end{gathered}$			$\begin{aligned} & 1723 \\ & 1707 \end{aligned}$	1618		
$\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}$	(4e)	2.71		3.62		$7.17(30 \mathrm{H}, \mathrm{br} \mathrm{m})$				$\begin{aligned} & 1718 \\ & 1698 \end{aligned}$	

${ }^{a} \mathrm{~s}$, singlet; dd, doublet of doublet; m, multiplet. ${ }^{b}$ See text. ${ }^{c} \delta 5.26\left(2 \mathrm{H}, \mathrm{s} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{d}$ Measured in dichloromethane because of solubility.
stretching region between 1696 and $1722 \mathrm{~cm}^{-1}$ are characteristic of the $\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)$ skeleton. The strong, lower frequency bands, also in the carbonyl stretching region, at 1618-1622 cm^{-1} may reasonably be assigned to methoxycarbonyl groups involved in intermolecular coordination of the monomer species to form the dimers. From the NMR data of Table VII it is seen that the methyl proton signals of the α methoxycarbonyl group split into two singlets in complexes 3a-e. The splittings of these proton signals from the β-methoxycarbonyl group are smaller in 3a and 3 e and are not observed at all in 3b and 3c. We thus conclude that one of the α-methoxycarbonyl groups, rather than a β-methoxycarbonyl group, is involved in intermolecular coordination (eq 3). Mo-

seley and Maitlis ${ }^{8}$ proposed a possible structure of the oligomeric complex 1 involving bridging through the two oxygen atoms of the carbonyl groups on the β-methoxycarbonyl substituents; however, their evidence did not eliminate the possibility that the α-methoxycarbonyl, rather than the β-methoxycarbonyl, groups might be involved.
These deductions from spectroscopic data have been confirmed by the determination of the crystal and molecular structure of $\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\left(2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)\right]_{2}(3 \mathrm{~d})$.

The crystal structure consists of well-separated dimers. A view of one such dimer is shown in Figure 2. A tabulation of important distances and angles is given in Table VIII. Indeed dimer formation occurs through bridges involving the oxygen atom of the carbonyl group on one of the α-methoxycarbonyl groups of each monomer unit. In the dimer thus formed each Pd atom maintains nearly square-planar geometry. The central eight-membered ring $\mathrm{Pd}-\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{Pd}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ is distinctly nonplanar. The ring has approximately a boat configuration as indicated by the least-squares plane data and the conformational angles of Table IX. However, each of the PdC_{4} rings maintains its expected planarity, the largest deviation from planarity being $0.08 \AA$. The dihedral angle between the two PdC_{4} rings is 95.6°.

There is exceptionally good agreement in the metrical details of the A and B portions of the present dimer (Table VIII). Moreover, the $\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)$ portion of each monomer is in excellent agreement with that portion of the $\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)(\text { norbornadiene })^{16}$ structure. Table X presents such a comparison for the $\mathrm{Pd}-\mathrm{C}_{4}$ rings. The absence of delocalization or aromatic character in the PdC_{4} rings is again apparent from the bond length alternation. In principle such delocalization could occur in a d^{8} complex. ${ }^{20}$ There are very slight variations in the angles within the metallocycle. However, the only large differences occur in the Pd-C distances; these distances undoubtedly are sensitive to the nature of the trans ligands. In particular, in the present complex note the significantly longer $\mathrm{Pd}-\mathrm{C}$ distance trans to the N atom of the donor ligand.

An attempt to measure the NMR spectrum of $\operatorname{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)(2,6 \text {-lutidine })_{2}(4 \mathrm{~d})$ resulted in a complex spectrum composed of a mixture of $\mathbf{4 d}$ ($\delta 2.96 \mathrm{~s}$ of 2 -methyl), dimeric 3d, and free 2,6-lutidine ($\delta 2.51 \mathrm{~s}, 6.93 \mathrm{dd}, 7.43 \mathrm{~m}$).

Table VIII. Selected Distances (\AA) and Angles (deg) in $\left[\mathrm{Pd}\left(\mathrm{C}_{4}(\mathrm{COOMe})_{4}\right)\left(2,6 \cdot \mathrm{Me}_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}\right)\right]_{2}$

distance	$\mathrm{A}^{\text {a }}$	$\mathrm{B}^{\text {a }}$	angle	A	B	angle	A	B
Pd -C(1)	2.009 (3)	2.012 (3)	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{C}(4)$	79.5 (1)	79.2 (1)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(6)$	123.2 (3)	126.1 (3)
$\mathrm{Pd}-\mathrm{C}(4)$	1.985 (3)	1.982 (3)	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{O}(1)$	97.5 (1)	98.0 (1)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(6)$	123.2 (3)	120.7 (3)
$\mathrm{Pd}-\mathrm{N}$	2.089 (2)	2.118 (2)	$\mathrm{C}(1)-\mathrm{Pd}-\mathrm{N}$	172.3 (1)	169.4 (1)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)$	121.9 (3)	123.7 (3)
PdA-O(1)B	2.162 (2)		$\mathrm{C}(4)-\mathrm{Pd}-\mathrm{O}(1)$	170.5 (1)	173.6 (1)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(7)$	124.3 (3)	123.9 (3)
$\mathrm{PdB}-\mathrm{O}(1) \mathrm{A}$	2.159 (2)		$\mathrm{C}(4)-\mathrm{Pd}-\mathrm{N}$	94.6 (1)	95.0 (1)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(7)$	121.6 (3)	122.2 (3)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.344 (4)	1.346 (4)	$\mathrm{O}(1)-\mathrm{Pd}-\mathrm{N}$	89.1 (1)	88.6 (1)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(8)$	123.9 (3)	119.2 (3)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.473 (4)	1.472 (4)	$\mathrm{Pd}-\mathrm{C}(1)-\mathrm{C}(2)$	116.3 (2)	116.1 (2)	$\mathrm{Pd}-\mathrm{C}(4)-\mathrm{C}(8)$	119.3 (2)	123.5 (2)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.347 (4)	1.345 (5)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	113.4 (3)	113.2 (3)			
$\mathrm{C}(1)-\mathrm{C}(5)$	1.457 (4)	1.468 (4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	113.8 (3)	113.8 (3)	$\mathrm{C}(9)-\mathrm{N}-\mathrm{C}(13)$	$116.8{ }^{\text {b }}$	
$\mathrm{C}(2)-\mathrm{C}(6)$	1.486 (4)	1.482 (5)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Pd}$	116.8 (2)	116.8 (2)	$\mathrm{N}-\mathrm{C}(9)-\mathrm{C}(10)$		
$\mathrm{C}(3)-\mathrm{C}(7)$	1.485 (4)	1.488 (5)	$\mathrm{Pd}-\mathrm{C}(1)-\mathrm{C}(5)$	121.8 (2)	119.9 (2)	$\mathrm{N}-\mathrm{C}(13)-\mathrm{C}(12)$)	$123.9{ }^{\text {b }}$	
$\mathrm{C}(4)-\mathrm{C}(8)$	1.480 (4)	1.482 (5)	$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{O}(1)$	125.2 (3)	123.3 (3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$118.5^{\text {b }}$	
$\mathrm{C}(5)-\mathrm{O}(1)$	1.232 (4)	1.233 (4)	$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{Pd}$	127.5 (2)	128.2 (2)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)\}$		
$\mathrm{C}(6)-\mathrm{O}(3)$	1.200 (4)	1.199 (5)	$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{O}(2)$	114.1 (3)	114.7 (3)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$118.3^{\text {b }}$	
$\mathrm{C}(7)-\mathrm{O}(5)$	1.198 (4)	1.201 (4)	$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{O}(4)$	111.6 (3)	112.2 (3)	$\mathrm{N}-\mathrm{C}(9)-\mathrm{Me}(5)$	117.2 (2)	116.3 (2)
$\mathrm{C}(8)-\mathrm{O}(7)$	1.200 (4)	1.206 (5)	$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{O}(6)$	111.4 (3)	111.1 (3)	$\mathrm{N}-\mathrm{C}(13)-\mathrm{Me}(6)$	117.3 (3)	117.3 (2)
$\mathrm{C}(5)-\mathrm{O}(2)$	1.328 (4)	1.310 (4)	$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{O}(8)$	113.2 (3)	112.6 (3)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{Me}(5)$	118.9 (2)	119.9 (2)
$\mathrm{C}(6)-\mathrm{O}(4)$	1.324 (4)	1.328 (5)	$\mathrm{C}(2)-\mathrm{C}(6)-\mathrm{O}(3)$	124.9 (3)	123.6 (4)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{Me}(6)$	118.8 (2)	118.8 (2)
$\mathrm{C}(7)-\mathrm{O}(6)$	1.326 (4)	1.329 (4)	$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{O}(5)$	125.4 (3)	125.6 (3)	$\mathrm{Pd}-\mathrm{N}-\mathrm{C}(9)$	120.7 (2)	123.5 (2)
$\mathrm{C}(8)-\mathrm{O}(8)$	1.332 (4)	1.320 (5)	$\mathrm{C}(4)-\mathrm{C}(8)-\mathrm{O}(7)$	123.2 (3)	124.7 (4)	$\mathrm{Pd}-\mathrm{N}-\mathrm{C}(13)$	122.4 (1)	119.7 (1)
$\mathrm{O}(2)-\mathrm{Me}(1)$	1.452 (4)	1.454 (4)	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{O}(2)$	120.7 (3)	121.8 (3)			
$\mathrm{O}(4)-\mathrm{Me}(2)$	1.441 (4)	1.448 (4)	$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{O}(4)$	123.5 (3)	124.2 (4)			
$\mathrm{O}(6)-\mathrm{Me}(3)$	1.437 (4)	1.445 (4)	$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{O}(6)$	123.2 (3)	123.2 (3)			
$\mathrm{O}(8)-\mathrm{Me}(4)$	1.450 (4)	1.461 (5)	$\mathrm{O}(7)-\mathrm{C}(8)-\mathrm{O}(8)$	123.4 (3)	122.7 (3)			
$\mathrm{C}(9)-\mathrm{Me}(5)$	1.515 (5)	1.512 (5)	$\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{Me}(1)$	117.0 (3)	118.0 (3)			
$\mathrm{C}(13)-\mathrm{Me}(6)$	1.513 (4)	1.513 (4)	$\mathrm{C}(6)-\mathrm{O}(4)-\mathrm{Me}(2)$	115.6 (3)	117.4 (3)			
$\mathrm{N}-\mathrm{C}(9)-\mathrm{C}(13)$	1.340^{6}		$\mathrm{C}(7)-\mathrm{O}(6)-\mathrm{Me}(3)$	117.1 (3)	116.5 (3)			
$\begin{aligned} & C(9)-C(10), \\ & C(11)-C(10),-C(12) \end{aligned}$	$1.395^{\text {b }}$		$\mathrm{C}(8)-\mathrm{O}(8)-\mathrm{Me}(4)$	115.8 (3)	114.2 (3)			

${ }^{a} \mathrm{~A}$ and B denote the " A " and " B " atoms of the dimer. ${ }^{b}$ The $\mathrm{NC} \mathrm{C}_{5}$ portion of the pyridine ring was treated as a rigid group having these dimensions, as determined by microwave spectroscopy (B. Bak, L. Hansen-Nygaard, and J. Rastrup-Andersen, J. Mol. Spectrosc., 2, 361 (1968)).

Table IX. Metrical Details on the $\overline{\mathrm{Pd}-\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{Pd}-\mathrm{C}-\mathrm{C}-\mathrm{O}}$ Ring
equation of best weighted least-squares plane
$15.404 x-4.487 y-11.046 z+2.248=0$
deviations (\AA) from this plane
$\operatorname{Pd}(\mathrm{A}) 0.0259(2) ; \mathrm{C}(1 \mathrm{~A})-0.116(3) ; \mathrm{C}(5 \mathrm{~A})-1.113(3) ; \mathrm{O}(1 \mathrm{~A})$
$-1.287(2) ;$
$\mathrm{Pd}(\mathrm{B}) 0.0269(2) ; \mathrm{C}(1 \mathrm{~B})-0.779(3) ; \mathrm{C}(5 \mathrm{~B})-1.873(3) ; \mathrm{O}(1 \mathrm{~B})$
$-1.763(2)$
torsion angles, deg
$\mathrm{Pd}(\mathrm{A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})$
$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})-\mathrm{Pd}(\mathrm{B})$
$\mathrm{C}(5 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})-\mathrm{Pd}(\mathrm{B})-\mathrm{C}(1 \mathrm{~B})$
$\mathrm{O}(1 \mathrm{~A})-\mathrm{Pd}(\mathrm{B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$
$\mathrm{Pd}(\mathrm{B})-\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})$
$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})-\mathrm{Pd}(\mathrm{A})$
$\mathrm{C}(5 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})-\mathrm{Pd}(\mathrm{A})-\mathrm{C}(1 \mathrm{~A})$
$\mathrm{O}(1 \mathrm{~B})-\mathrm{Pd}(\mathrm{A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$

Table X. Comparisons of the Geometries of the PdC_{4} Skeleton

	$\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)-$ $(\text { norbornadiene })^{a}$	$\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}-\right.\right.$ $(2,6-\text {-lutidine }]_{2}{ }^{b}$
a, \AA	$2.023(3)$	$2.011(3)$
b, \AA	$1.343(4)$	$1.984(3)$
c, \AA	$1.479(3)$	$1.346(4)$
$\alpha, \operatorname{deg}$	$79.7(1)$	$1.473(4)$
$\beta, \operatorname{deg}$	$15.7(2)$	$79.4(1)$
$\gamma, \operatorname{deg}$	$114.5(2)$	$116.5(2)$

${ }^{a}$ Reference $16,{ }^{b}$ Average values from present work.

Figure 2. A drawing of the $\left[\operatorname{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\left(2.6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}^{\prime}\right)\right]_{2}$ molecule. Hydrogen atoms have been omitted. Other atoms are drawn at the 20% probability level for thermal vibration. The labeling scheme is shown.

This indicates that 4d, although stable in the solid state, dissociates one molecule of sterically hindered 2,6 -lutidine in solution to give a mixture of about 83% of dimer 3 d and 17% of monomer 4 d at room temperature. This observation suggests the possibility that one molecule of donor ligand is liberated from $\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L}_{2}$ (4) to give the corresponding coordinatively unsaturated monomer, " $\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L}$ " (5), which dimerizes through the intermolecular carbonyl
bridging of the α-methoxycarbonyl group to give $\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L}\right]_{2}(3)$.

Similar phenomena are observed in the initial stages of the reactions between oligomer 1 and donor ligands. At the early stage of the reaction between 1 and equimolar triphenylphosphine, for example, the mixture is composed of unreacted 1 and monomeric $\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ (4e) which slowly disproportionates to 3 e . This disproportionation process is confirmed by the direct reaction between 1 and $\mathbf{~} \mathbf{e}$ which in 10 min at $25^{\circ} \mathrm{C}$ gives 3 e in 96% yield.
The dimeric complex 3 e is a surprisingly poor catalyst for the cyclohexadiene annulation of norbornene with an excess of DMAD; only 29% of DMAD is consumed with 6% of 3 e at $45{ }^{\circ} \mathrm{C}$ for 9 days. Under these conditions all DMAD is converted to the adduct with either 1 alone or with a combination of 1 and an equivalent amount of triphenylphosphine. The catalytic inactivity of 3 e suggests that the intermolecular bridging of the α-methoxycarbonyl groups in the dimeric complex 3 e is stable to ligand cleavage by an entering cyclic olefin.

Discussion

In the presence of $\left[\operatorname{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\right]_{n}(\mathbf{1})$ a catalytic cyclocotrimerization of two molecules of DMAD with one molecule of NB occurs (reaction 1). The rate of this reaction is increased markedly, after a slight induction period, if PPh_{3} is added to the reaction mixture. The observations detailed above enable us to offer a plausible explanation for these facts.

The presence of the following disproportionation process (eq 5) is consistent with the appearance of the induction period (Figure 1).

$$
\begin{aligned}
& \operatorname{Pd}\left(\mathrm { C } _ { 4 } (\mathrm { COOCH } _ { 4 }) _ { 4 } \left(\mathrm{L}_{2}+1 / n_{[}\left[\operatorname{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right)\right]_{n}\right.\right. \\
& 41 \\
& \rightleftarrows 2 \mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L} \xrightarrow{\text { slow }}\left[\mathrm{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L}\right]_{i} \text { (5) } \\
& 5 \\
& 3 \\
& + \text { norbornene }{ }^{\text {rapid }} \\
& \text { catalytic cycle }
\end{aligned}
$$

The induction period corresponds to the time required for generating an active three-coordinate intermediate, $" \operatorname{Pd}\left(\mathrm{C}_{4}\left(\mathrm{COOCH}_{3}\right)_{4}\right) \mathrm{L}$ " (5), which is either rapidly intercepted by an existing cyclic olefin or is slowly dimerized to the catalytically inactive dimeric complex 3 . The relation between the catalytic cyclohexadiene annulation and the formation of 3a-e is shown in Scheme II, where these two reactions have 5 as a common intermediate. If one engages in mechanistic speculation, then the accelerating effect of PPh_{3} on reaction 1 is plausibly explained in terms of the intermediate $\mathbf{2 e}$. The Pd-C

bond trans to PPh_{3} in $\mathbf{2 e}$ is more susceptible to the insertion of the coordinated olefin because of the translabilizing influence of this donor ligand. Such an influence was evident in the $\mathrm{Pd}-\mathrm{C}$ bond lengths in 3d.

Scheme 11

Acknowledgments. We are grateful for the encouragement of Professor Y. Ishii. This work was supported by the U.S. National Science Foundation (CHE76-10335) and by the Ministry of Education of Japan.

Supplementary Material Available: Table IV, idealized positions of the hydrogen atoms, Table V , root-mean-square amplitudes of vibration, and Table VI, a listing of structure amplitudes (61 pages). Ordering information is given on any current masthead page.

References and Notes

(1) (a) Northwestern University; (b) Nagoya University.
(2) N. Calderon, E. A. Ofstead, and W. A. Judy, Angew. Chem., Int. Ed. Engl., 15, 401 (1976); R. H. Grubbs, D. D. Carr, C. Hoppin, and P. L. Burk, J. Am. Chem. Soc., 98,3478 (1976); J. McGinnis, T. J. Katz, and S. Hurwitz, ibid., 98, 605 (1976); T. J. Katz and J. McGinnis, ibid., 99, 1903 (1977); C. P. Casey, H. E. Tuinstra, and M. C. Saeman, ibld., 98, 608 (1976); P. G. Gassman and T. H. Johnson, ibid., 98, 6055, 6057, 6058 (1976); J. L. Bilhou, J. M. Basset, R. Mutin, and W. F. Graydon, ibld., 99, 4083 (1977).
(3) H. Hogeveen and H. C. Volger, J. Am. Chem. Soc., 89, 2486 (1967); J, Halpern, Acc. Chem. Res., 3, 386 (1970); L. Cassar, P. E. Eaton, and J. Halpern, J. Am. Chem. Soc., 92, 3515 (1970); R. J. Roth and T. J. Katz, ibid., 94, 4770 (1972); L. A. Paquette, J. S. Ward, R. A. Boggs, and W. B. Farnham, ibid., 97, 1101 (1975); L. A. Paquette, R. A. Boggs, W. B. Farnham, and R. S. Beckley, ibid., 97, 1112 (1975); L. A. Paquette, R. A. Boggs, and J. S. Ward, ibid., 97, 1118 (1975); S. Masamune, M. Sakai, and N. Darby, J. Chem. Soc., Chem. Commun., 471 (1972).
(4) R. Noyori, T. Odagi, and H. Takaya, J. Am. Chem. Soc., 92, 5780 (1970); R. Noyori, I. Umeda, H. Kawauchi, and H. Takaya, ibld., 97, 812 (1975); P. Binger, Angew. Chem., Int. Ed. Engl., 11, 309 (1972); Synthes/s, 427 (1973); P. Binger and U. Schuchardt, Angew. Chem., Int. Ed. Engl., 16, 249 (1977).
(5) C. W. Bird, 'Transition Metal Intermediates in Organic Synthesis", Logos Press, London, 1967, p 30.
(6) P. N. Rylander, '"Organic Synthesis with Noble Metal Catalysts"', Academic Press, New York, N. Y., 1973, P 191; S. Otsuka and A. Nakamura, Adv. Organomet. Chem., 14, 245 (1976).
(7) P. M. Maltlis, Acc. Chem. Res., 9, 93 (1976).
(8) K. Moseley and P. M. Maitlis, Chem. Commun., 982 (1971); J. Chem. Soc., Dalton Trans., 169 (1974).
(9) Ts. Ito, S. Hasegawa, Y. Takahashi, and Y. Ishil, J. Chem. Soc., Chem. Commun., 629 (1972); J. Organomet. Chem., 73, 401 (1974).
(10) J. Tsuji, "Organic Synthesis by Means of Transitlon Metal Complexes", Springer-Verlag, West Berlin-Heldelberg, 1975, p 153.
(11) H. Yamazaki and N. Haglhara, J. Organomet. Chem., 21, 431 (1970).
(12) A. J. Chalk, J. Am. Chem. Soc., 94, 5928 (1972).
(13) Y. Wakatsuki, T. Kuramitsu, and H. YamazakI, Tetrahedron Lett., 4549 (1974); Y. Wakatsuki, K. Aoki, and H. Yamazakl, J. Am. Chem. Soc., 98, 5284 (1974).
(14) A. Carbonaro, A. Greco, and G. Dall'Asta, Tetrahedron Lett., 5129 (1968); J. Organomet. Chem., 20, 177 (1969).
(15) K. P. C. Vollhardt and R. G. Bergman, J. Am. Chem. Soc., 98, 4996 (1974); R. L. Hillard and K. P. C. Vollhardt, Ibld., 99, 4058 (1977).
(16) H. Suzukl, K. Itoh, Y. Ishli, K. SImon, and J. A. Ibers, J. Am. Chem. Soc., 98, 8494 (1976).
(17) T. Ukal, H. Kawazura, Y. Ishll, J. J. Bonnet, and J. A. Ibers, J. Organomet. Chem., 85, 253 (1974).
(18) See, for example, J. M. Waters, and J. A. Ibers, Inorg. Chem., 18, 3273 (1977).
(19) See paragraph at end of paper regarding supplementary materlal.
(20) D. L. Thorn and R. Hoffmann, Inorg. Chem., In press.

